Involvement of surface cysteines in activity and multimer formation of thimet oligopeptidase.

نویسندگان

  • J A Sigman
  • M L Sharky
  • S T Walsh
  • A Pabon
  • M J Glucksman
  • A J Wolfson
چکیده

Thimet oligopeptidase is a metalloenzyme involved in regulating neuropeptide processing. Three cysteine residues (246, 248, 253) are known to be involved in thiol activation of the enzyme. In contrast to the wild-type enzyme, the triple mutant (C246S/C248S/C253S) displays increased activity in the absence of dithiothreitol. Dimers, purportedly formed through cysteines 246, 248 and 253, have been thought to be inactive. However, analysis of the triple mutant by native gel electrophoresis reveals the existence of dimers and multimers, implying that oligomer formation is mediated by other cysteines, probably on the surface, and that some of these forms are enzymatically active. Isolation and characterization of iodoacetate-modified monomers and dimers of the triple mutant revealed that, indeed, certain dimeric forms of the enzyme are still fully active, whereas others show reduced activity. Cysteine residues potentially involved in dimerization were identified by modeling of thimet oliogopeptidase to its homolog, neurolysin. Five mutants were constructed; all contained the triple mutation C246S/C248S/C253S and additional substitutions. Substitutions at C46 or C682 and C687 prevented multimer formation and inhibited dimer formation. The C46S mutant had enzymatic activity comparable to the parent triple mutant, whereas that of C682S/C687S was reduced. Thus, the location of intermolecular disulfide bonds, rather than their existence per se, is relevant to activity. Dimerization close to the N-terminus is detrimental to activity, whereas dimerization near the C-terminus has little effect. Altering disulfide bond formation is a potential regulatory factor in the cell owing to the varying oxidation states in subcellular compartments and the different compartmental locations and functions of the enzyme.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Crystal structure of human thimet oligopeptidase provides insight into substrate recognition, regulation, and localization.

Thimet oligopeptidase (TOP) is a zinc metallopeptidase that metabolizes a number of bioactive peptides and degrades peptides released by the proteasome, limiting antigenic presentation by MHC class I molecules. We present the crystal structure of human TOP at 2.0-A resolution. The active site is located at the base of a deep channel that runs the length of the elongated molecule, an overall fol...

متن کامل

Angiotensin II-independent angiotensin-(1-7) formation in rat hippocampus: involvement of thimet oligopeptidase.

The involvement and relevance of the renin-angiotensin system have been established clearly in cardiovascular diseases, and renin-angiotensin system involvement has also been investigated extensively in the central nervous system. Angiotensin II acts classically by binding to the AT1 and AT2 receptors. However, other pathways within the renin-angiotensin system have been described more recently...

متن کامل

Human thimet oligopeptidase.

We have purified human thimet oligopeptidase to homogeneity from erythrocytes, and compared it with the enzyme from rat testis and chicken liver. An antiserum raised against rat thimet oligopeptidase also recognized the human and chicken enzymes, suggesting that the structure of the enzyme has been strongly conserved in evolution. Consistent with this, the properties of the human enzyme were ve...

متن کامل

Swapping the substrate specificities of the neuropeptidases neurolysin and thimet oligopeptidase.

Thimet oligopeptidase (EC 3.4.24.15) and neurolysin (EC 3.4.24.16) are closely related zinc-dependent metallopeptidases that metabolize small bioactive peptides. They cleave many substrates at the same sites, but they recognize different positions on others, including neurotensin, a 13-residue peptide involved in modulation of dopaminergic circuits, pain perception, and thermoregulation. On the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Protein engineering

دوره 16 8  شماره 

صفحات  -

تاریخ انتشار 2003